From Eye to Insight

FALCON FLIM Manual

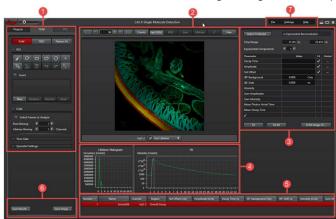
20200110_EN

FLIM

1.	FLIM Calling up	1	Page
2.	Calibration of laser and detectors	1	Page
3.	Adjust Trigger Level	1	Page
4.	Detector setting	5	Page
5.	Adjust Photon/Pulse	6	Page
6.	Repetition number	6	Page
7.	Setting the ROI	9	Page
8.	Fit	16	Page
9.	Сгор	10	Page
10	. FLIM image Fit	27	Page
11. Save image 16, 33			
12	. Phasor plot	35	Page
13	τSTED	48	Page

Tips

- * Check box for Gating function is not available for FLIM, but the values apply to the FLIM.
- * PMT is not available for FLIM
- * Notch filter supported Pulse laser is required
- (Notch filter not-supported pulsed laser could available for enough bright sample)
- * LAS X FLIM/FCS can be opened in the following LAS X wizard using the FLIM button and is available for FLIM experiment there:
- FCS: In the Setup Imaging operating step
- FRET AB, FRET SE: in the Setup operating step in the Workflow or Acquisition tab
- Live Data Mode: In the Acquire operating step
- Electrophysiology: In the Acquire operating step


* Click the LAS_X_SingleMoleculeDetection.exe shortcut j open the An evaluation in LAS X FLIM/FCS. LAS X Small is not available for the analysis

 STED 77 nm and WLL pulse timing are synchronized.
 WLL pulse picker is not available only when STED 775 nm is ON STED 775 nm is only available when WLL is 80 MHz FLIM Calling up

Click the **FLIM** button. The LAS X FLIM/FCS opens on the second monitor.

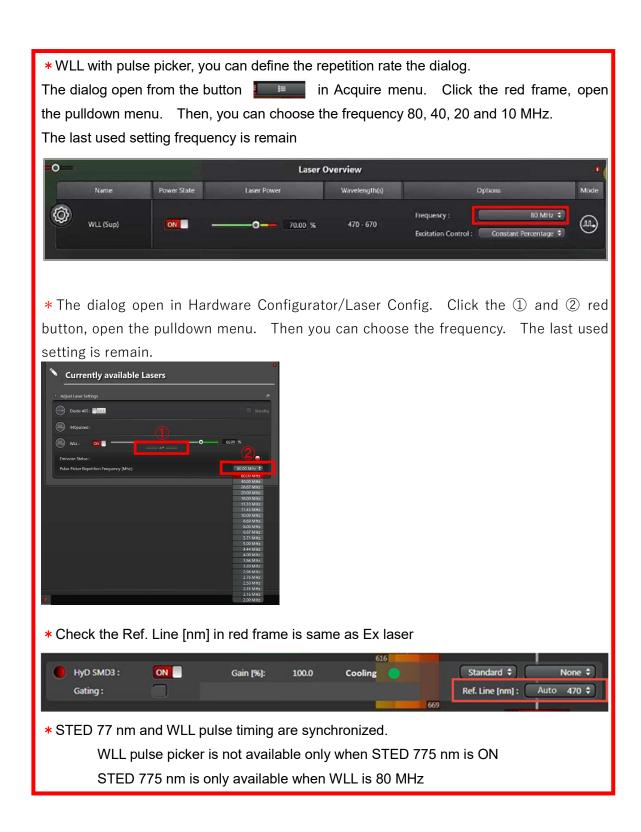
In second monitor, the FLIM setting dialog field is displayed.

Calibration of laser and detectors

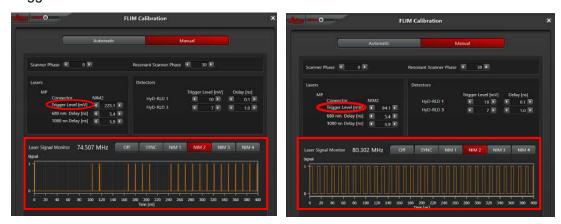
Click the ⑦ Setting File Settings

*WLL: Automatic/Calibrate

	atomatic	Manual	Pulse Distance Calibration	
Select Lasers to G	alibrate			
2 470 pulsed				
G40 pulsed				
🗐 WLL				
Select Detectors to	b Calibrate			
HJD SMD 1				
I HJO SMD 2				
🐼 Hyd 4				


*Trigger level is available for background level adjustment (Only SMD-HyD)

Help


open the FLIM Calibration dialog

*Sequential setting is disappear after calibration

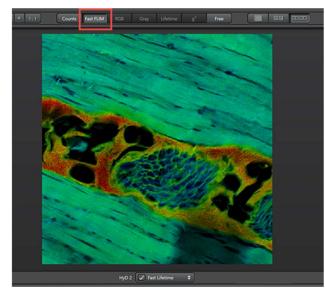
* MP : Manual/NIM2-4 (The number depend on the system) Adjust the pulse width with Trigger level

▼ FLIM Settings					
Filter Supported WLL-Lines					
470 488 514 561 633 640					
Definition of FLIM image acquisition time Line Repetitions 1 🗘					
 Frame Duration Frame Repetitions Acquire until max : 100 photons / pixel 					
Specialist Settings					

F LIM Settings (Main monitor) Filter Supported WLL-Lines : All WLL lines supported by a filter system are represented by a button and are enabled when you click the button.

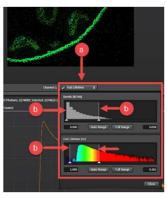
Line Repetitions	Define the number of scans per line when acquiring a FLIM			
	image. The resulting acquisition time for the FLIM image is			
	automatically displayed under Duration of each image.			
	Line accumulation for intensity image.			
Frame Duration	Define the duration for acquisition of a single FLIM image			
Frame Repetitions	Define the number of scans per frame when acquiring a FLIM			
	image.			
	Frame average for intensity image			
Acquire until max	Until a certain number of photons have been detected in the			
photons/pixel	brightest pixel within a FLIM display window			
	Frame average for intensity image			
Sum of all Channels	All channels			
Brightest Channel	Brightest Channel			
Dimmest Channel	Darkest Channel			

Specialist Settings : To increase the speed of image acquisition, detector channels for data acquisition can be combined manually into FLIM display channels.


If this function is activated, new dialog field (in the Fig. left), Manual FLIM Channel Assignment, opens.

Single Detector	Multiple Detectors	All Detectors
none	HyD 1 🗘	
HyD 1		
HyD 2	+	
Channel Name HyD 1		
<u></u>		
		Close

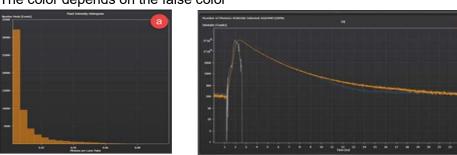
Click the first drop down menu. The following dialog (in the Fig. left) opens for assigning the channels.


Single Detector	Assignment of exactly one detection channel.		
	All activated FLIM detectors are listed in this area. By clicking on an		
	entry, you can precisely assign one detection channel to selected		
	display channel.		
Multiple Detector	Assignment of several detection channels.		
	To increase the image-capturing speed, you can assign multiple		
	detection channels to the selected display channel in this field. Each		
	time + is clicked, another drop down menu is added. Then, select		
	each desired detection channel from the drop down menus. Clicking		
	X removes the individual drop down menu again.		
All Detectors	Assignment of all active detection channels.		
	Clicking the button assigns all active detection channels to display		
	channel.		

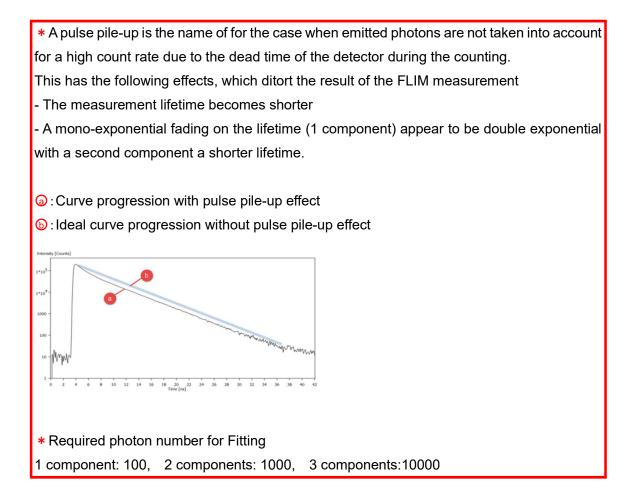
A Fast FLIM image is displayed in the sub-monitor for each detection channel. For each pixel, an averaging of all fluorescence lifetimes and fluorescence intensities that occur in the specimen is displayed in ta false color image. The contrast for lifetime and intensity is set automatically, but can be adjusted.

Right click on the image, and choose Show Data Cursor. Then, shown this dialog.

Events: 281 Cnts Fast FLIM: 2.393 ns


If necessary, change the contrast for lifetime and intensity. To open the dialog for adjusting the contrast, click the control element next to the channel designation below the FLIM image display window. You can change the contrast by using the mouse to drag the white margin lines to desired position.

Underneath the image view, ⓐ:Pixel Intensity Histogram, the pile-up control histogram, ⓑ : Lifetime Decay Curve are


displayed live

Pixel Intensity Histogram: Display the Events over the photon/Laser pulse

Use the pixel intensity histogram to adjust the laser intensity live, so that a maximum of 0.5 photons/laser for HyD and 1.0 photons/laser for SMD-HyD are measured.

The color depends on the false color

8-(1) Setting for analysis

8-② Display window for FLIM image. During FLIM test and FLIM measurements, a fast FLIM image is already being displayed live. Below the display window, there are controls for adjusting the contrast of the individual channels.

8-3 Parameter setting are displayed for the fit on the right edge of the screen

8-④ In the diagram area, histogram is displayed in left and the lifetime decay curve is displayed on the right

8-5 A navigation table is displayed below the diagram in which is a row entry for each image, each ROI and each FLIM display channel.

8-6 In this dialog, you can save the FLIM image

8-⑦ In this dialog, you can export FLIM data

Adjust Photon/Pulse

18-①

Using ROIs you can limit the region of interest of the fast FLIM image. For this purposes, various tools are available in this dialog

K	0	0	0	+
R	A	+>	¢	**

From the upper left

①Brush ②Polygon

③Rectangle

④Ellipse

(5)Circle

6 Individual pixel

⑦Selecting a ROI

8Select all ROIs

Delete selected ROI(s)

10 Undo last operation

①Restore last operation

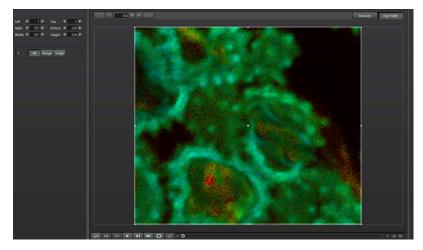
¹Automatically form a ROI

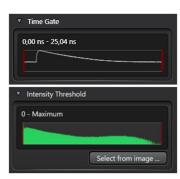
Invert: Reverse the color display in the FLIM image and shows the image in inverted colors.

Additional function for handling ROIs

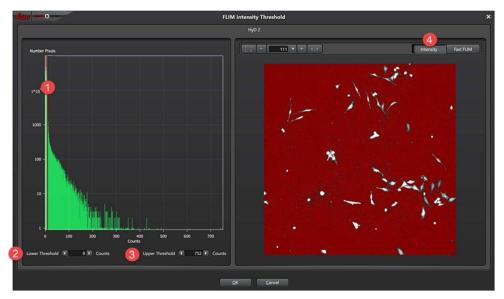
New	Creates an entry for ROI. Afterwards, you can draw the ROI.		
Rename Enables you to enter a designation for the ROI entry			
Remove Deletes selected ROIs			
Reset	Deletes all ROIs		

z	All	Range	Single	Split
	Binning		1 💽	
Pixel	Binning		1 💌	
Lifeti	me Binning		1 🕅	Bins
	Reflection	Filter		
				Crop

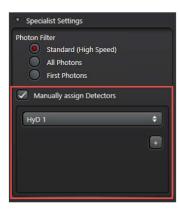

Z	All	Range	Single	Split Split
	То		10	
	Binning		1 🖸	
Pixel	Binning		1 🖻	
Lifeti	me Binning		1 🔊	Bins



From、To	Define a range for the images to be analyzed from the repetitions of the
	scan. For this purpose, the From and To input fields are available.
Pixel Binning	Set the number of pixels compiled during image analysis.
Z/T	The dimension of the current image series is displayed
All	All single images are analyzed
Range	You can define a range for the single images of the series to be
	analyzed. For this purpose, the From and To input field are available.
Single	You can select a single image under Index to be used for analysis
Split	Only for Z or T. Each single image od series is represented separately
	with a row in the results table and a curve in the lifetime decay or phasor
	and can be analyzed indivually
Lifetime Binning	Set the number of time frames are compiled in the lifetime decay curve.
	This setting only affected the display of the curve (it became smoother).
	It is not included in the analysis.
Reflection Filter	If this function is enabled, the values generated by reflections when WLL
	are cut from the lifetime curve.


Crop

It is possible to crop lifetime series in time and space and to bin in time as in Z.


In this dialog, you can define a time gate, starting the time of the excitation pulse, in which the analysis of your FLIM image data is carried out. The time gate is applied to each frame. In this dialog, you can define an intensity range for which the analysis of your FLIM image data is carry out. The intensity range is applied to all further analyses and treated as an ROI. By moving the red lines with the mouse

(1)By moving the red line or entering the ②lower and ③upper value. At the same time, in the right area of the display window you can see which areas have been selected in the image.

④Here, you can define the threshold value in the left window are by moving red line① or entering the lower② and upper values③. At the same time, in the right area of the display window you can see which areas have been selected in the image.

Intensity	All hidden areas not included in the evaluation are displayed red
FastFLIM	All hidden areas not included in the evaluation are displayed gray

Narrow down the time gate by dragging the red lines with the mouse.

The setting is already applied directly to the image display window (Fast FLIM and Counts) as well as the decay curves. The raw data is unchanged by this setting.

Standard (High Speed)	For the lifetime decay curve time intervals between two laser						
	pulses are evaluated only if exactly one photon has been						
	emitted in them. For the FLIM image fit, the dead time						
	correction is applied. HyD deadtime is approximately 1.5						
	nsec.						
All Photons	All emitted photons are detected (Raw data)						
First Photon	Occasionally, 2 or more photons are emitted after a laser						
	pulse. In each case, however, only the first emitted photon						
	is counted. This ultimately leads to a falsification of the						
	results known as the pile-up effect.						
Manual assign Detectors	To increase the speed of image acquisition, detector						
	channels for data acquisition can be combined manually into						
	FLIM display channels.						

8-2

A C - 232 + 1:1 1 2 3 4 5	

- 1: Reset the zoom for the display window
- 2: Reduce the zoom for the display window
- 3: Enter the zoom factor for the display window (%)
- 4: Increase the zoom for the display window
- 5: Sets the zoom for the display window to the 100%

®

During FLIM test and the FLIM measurement, you can choose the following views

Intensity	For each pixel, show the number of the counted photons in gray-scale			
Fast FLIM	For each pixel, show an average of the all fluorescence lifetimes and			
	intensities in false color			
χ ²	For each pixel, show the intensity of the error or the fit precision			
Free	You can freely select the parameters for intensity and color using a			
	dropdown menu in the contrast setting			

After the FLIM Image Fit (Ref. page 27), display options that shown in next page are available.

Display option for FLIM

Intensity Fast FLIM Components Grayscale Lifetime χ^2 Free					
Components	For each channel, the special distribution of the intensities is displayed in				
	a separate RGB color				
Grayscale	Same as RGB, but the intensities are represented as grayscale				
Lifetime	The special distribution of the lifetime for each component is displayed in				
	false colors (Rainbow colors) and the amplitudes are displayed as an				
	intensity.				

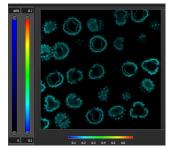
Display option for FRET

Intensity Fast FLIM Ef	fficiency FRET Binding Distance χ^2 Free			
Efficiency	The average Apparent FRET efficiency is shown in image form as a false			
	color			
FRET	The average FLIM FRET efficiency is shown in image form as a false color			
Binding	Proportion of the bound donor molecules to the total number of donor			
	molecules in % is displayed using a false color image			
Distance	The distance of the donor and acceptor are displayed using a false color			
	image			

Display option for Pattern Fit

	Intensity Fast FLIM Components Grayscale χ^2 Free						
Components For each channel, the special distribution of the intensities is display	ts For each channel, the special distribution of the intensities is displayed in						
a separate RGB color	a separate RGB color						
Grayscale Same as RGB, but the intensities are represented as grayscale	Same as RGB, but the intensities are represented as grayscale						

©: Display Options for the Channels

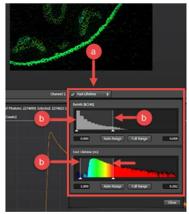

()All channels are displayed superimposed in one image

2 All detection channels are displayed side-by-side

(3)All lifetime channels and detection channel are displayed side-by-side

(4) Displays bars for intensity range and lifetime range for manual setting in left of window

(5)Show a lifetime scale below the display window



O: Contrast Setting

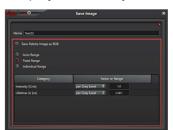
If you disable the checkbox on the button, no image is shown for the corresponding channel.

Clicking the button opens a dialog window that you can use to set the contrast for the current image display.

Auto Range	Limits the range automatically to optimal					
	imaging					
Full Range	Uses the entire are for displaying the					
	imaging					

Narrow down the lifetime scale by dragging the Δ by mouse

^(B) Clicking the button opens a dialog window (in the below Fig.) that you can choose parameters.


Save Results	The current status of all analysis is stored, in the project directory.							
	The data can be called up again in LAS X FLIM/FCS and further							
	analyzed.							
Save Image	The colored Fast FLIM or FLIM image is created and stored as a							
	normal intensity image in the .lif format as a 3 channel image (RGB)							
	in the project directory and can be further processed as such. An							
	evaluation in LAS X FLIM/FCS is no longer possible with this format.							
You can enter a designation under Name								

8-6 This dialog allows you to save your analysis results or FLIM images

Save Pallet Image as RGB

If this function is enabled, the colored Fast-FLIM or FLIM image is created and stored as a normal intensity image in the .lif format as a 3-channel image (RGB) in the project directory and can be further processed as such.

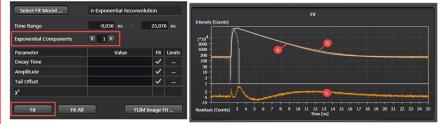


Aı	uto Range	Scales the image automatically between minimum and maximum so				
		that the image is displayed properly, but no values are quantified.				
Fixed Range You can		You can select the scaling range for each display Category				
		separately. The values are quantifiable.				
	Per Grey	Scaling by gray-scale value. Here, under Factor or Range, enter a				
	Level	factor with which the corresponding grayscale value is weighted.				
		The values are quantifiable.				
	Range	Scaling by intensity. Here, select a range under Factor or Range by				
		entering values for minimum and maximum.				
		The values are quantifiable.				
In	dividual Range	Here, you can define the scaling ranges for each component				
		individually, just like you can for Fixed Range.				
		The values are quantifiable.				

8-3 Fit Setting	gs:	FLIM	Projects FL1	M FCS		
Select Fit Model n-Exponential Reconvolution			FLIM FRE	FT Pattern Fit		
Time Range		ns - 12.752 ns	Fit	18-5 Clicking this button calculates the		
Exponential Components Parameter	Exponential Components (3)			curve fitting with the setting listed above		
Decay Time 1 Decay Time 2	0.148 ± 0.003 ns ✓ 0.933 ± 0.041 ns ✓			с с		
Decay Time 3 Amplitude 1		t 0.157 ns ✓ t 2.708 kCnts ✓		for all curves a selected in navigation table		
Amplitude 2	51.730 ±	t 1.395 kCnts 🗸	Fit All	18-5 Clicking this button calculates the		
Amplitude 3 Tail Offset	47.575 ±	± 2.195 kCnts ✓ ± 14.699 Cnts ✓		curve fitting with the settings listed for all		
IRF Background IRF Shift	0.000	Cnts ns		curves of the selected detected channel		
Intensity 1 Intensity 2		t 6.296 kCnts	FLIM	Open the FLIM image Fit dialog, in which		
Intensity 3 Sum Amplitudes		234.411 kCnts	Image	you can configure setting for the pixel-to-		
Sum Intensity Mean Photon Arival Time		2.546 kCnts	Fit	pixel curve fitting of the curves selected in		
Mean Decay Time	0.361 ±	t 0.003 ns	1 11			
Fit Fit All		FLIM Image Fit		the navigation table and start the pixel-to-		
				pixel curve fitting.		
Exponential		The number of		•		
Components		(To determine	it, Ref. Nex	, Ref. Next page)		
Select Fit		For FLIM exper	iments, 2 r	models are available for calculating the curve		
Model		fitting				
n-Exponent	tial	The decay curv	/e is fitted	taking into the IRF. This also enable using		
Reconvolut	tion	the beginning	of the decay curve for analysis. This improves the			
with IRF	with IRF statistics of the		e data and	I thus enable a correct estimate of relative		
	amplitudes from			of the exponential decay curves.		
n-Exponent	tial	Only the rear ar	ea that is n	ot affected by the IRF is used for the analysis.		
Tail Fit		This attains co	s correct for the lifetimes as the lifetimes are significantly			
		greater than the	e IRF width	n. The disadvantage of this model is that no		
		good curve fitti	ng can be	calculated for components with short curve		
		fitting. * It is n	ot available	e for the sample that contain lifetime shorter		
		than IRF (e.g. 5	500 nsec).			
Decay Time		Lifetime (nsec)				
Amplitude		Intensity fluores	scence			
Tail Offset Background inter			ensity			
IRF Background Background inter		ensity wher	n acquiring IRF (Meaningful if a measured IRF			
is used)						
IRF Shift		Chronological o	offset of the	IRF (Meaningful if a measured IRF is used)		
Intensity		The total intens	ity of the lif	fetime		
Sum Amplitud	de	Total of the am	olitude			

Mean Photon	Mean photon detected time		
Arrival Time			
Mean Decay	Mean lifetime (nsec)		
Time			
χ ²	Fit error or the fit precision for pixel		

Fit of the Lifetime Decay Curve: Determining the Number of Exponential Components In order to determine the number and distribution of individual fluorescent components in the image using the mean lifetime decay curve, the experimentally obtained decay curve must initially be calibrated with a theoretical exponential curve.


During the FLIM image acquisition, the Fit dialog shows the decay curve of the fluorescence intensity (Intensity) or the number of measured photons in the image (all pixels) over time excitation pulse (Time) (a) :Average value of the

measured photons over time after the excitation pulse

Select Fit Model and start Exponential Components value 1, click Fit.

The calculation is carried out and the results are shown as follows in the Fit dialog In addition to the measured decay curve (a), the diagram shows the theoretical exponential

curve with a component b and the deviation in the lower range c

If the following criteria are met, this indicates that the correct number of components have been measured:

- Curves (a) and (b) lie nicely on top of each other
- Curve is exhibits only minor fluctuations
- The FLIM image after the Fit is no noisy

- The value for χ^2 which indicates the Fit precision, attenuates only slightly (minimum =1) when the number of the components for the components for the fit is increased

In the above case, all three criteria negate the assumption that these is only a single exponential component

The Time gate and Intensity Threshold (Ref. page 10) are effective for χ^2

Example

In the following example, the fit has been carried out with 1, 2 and 3 exponential components. The result allows you to assume that these 3 exponential components here, since the following are true for an Exponential Component value of 3:

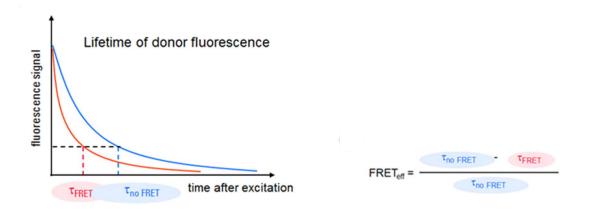
ⓐ: The experimental and the theoretical lifetime decay curve lie nicely on top of each other.

- **(b)**: The deviation curve exhibits little fluctuation
- \bigcirc : The value for χ^2 is close to 1

8-③ Fit Settings: FRET					Projects	FUM FCS	
Select Fit Model	Select Fit Model Mono-Exponential Donor					FLIM FRET Pattern Fit	
Fitting Range	0.048 ns - 11.976 ns			6 ns	Fit	18-5 Clicking this button calculates the	
Parameter	Value		Fit	Global		ourse fitting with the patting listed above	
Forster Distance	1.000	nm				curve fitting with the setting listed above	
Unquenched Donor Lifetime	2.489 ± 0.045	ns	~			for all curves a selected in navigation table	
Unquenched Donor Amplitude	33.299 ± 0.957	kCnts	~				
Quenched Donor Lifetime	0.585 ± 0.258	ns	~		Fit All	18-5 Clicking this button calculates the	
Quenched Donor Amplitude	2.660 ± 0.838	kCnts	~			- 0	
Tail Offset	691.472 ± 40.234	Cnts	~			curve fitting with the settings listed for all	
IRF Background	0.000	Cnts					
IRF Shift	0.000	ns				curves of the selected detected channel	
FLIM FRET Efficiency	76.479 ± 9.895	%			FLIM	Open the FLIM image Fit dialog, in which	
Apparent FRET Efficiency	1.422 ± 0.841	%				Open the r Lini image r it dialog, in which	
FRET Intensity	16.053 ± 13.236	kCnts			Image	you can configure setting for the pixel-to-	
Binding	7.396 ± 2.351	%			Ŭ	y = = = = = = = = = = = = = = = = = = =	
Donor-Acceptor Distance	0.822 ± 0.073	nm			Fit	pixel curve fitting of the curves selected in	
χ ²	0.969						
						the navigation table and start the pixel-to-	
Fit Fit All	Fit Fit All FRET Image Fit					pixel curve fitting.	

Förster Distance	The distance at which the energy transfer efficiency is		
	50%		
Unquenched Donor Lifetime	The lifetime of Donor without FRET		
Unquenched Donor Amplitude	The intensity of Donor without FRET		
Quenched Donor Lifetime	The lifetime of Donor with FRET		
Quenched Donor Amplitude	The intensity of Donor with FRET		
Tail Offset	Background intensity		
IRF Background	Background intensity when acquiring IRF (Meaningful if		
	a measured IRF is used)		
IRF Shift	Chronological offset of the IRF (Meaningful if a		
	measured IRF is used)		
FLIM FRET Efficiency	This is calculated only from the donor molecules in the		
	pixel at which FRET actually occurs		
Apparent FRET Efficiency	The average Apparent FRET efficiency of all molecules		
FRET Intensity	Intensity of the interacting donor molecules		
Binding	The binding strength between donor and acceptor		
	(Proportion of the bonded donor molecules to the total		
	number of the donor molecules %)		
Donor-Acceptor Distance	Average distance between donor and acceptor (nm)		
χ ²	Fit error or the fit precision for pixel		
Donor-Acceptor Distance	(Proportion of the bonded donor molecules to the to number of the donor molecules %) Average distance between donor and acceptor (nm)		

Calculating FLIM FRET efficiency


Create a Fast FLIM images using donor only sample and FRET sample. In donor only sample, copy Unquenched Donor Lifetime (Mono-Exponential Donor) or Mean Photon Arrival Time (Multi-Exponential Donor). In FRET sample curve fitting, disable the Fit in Unquenched Donor Lifetime and paste. Then, carry out the curve fitting by clicking on Fit. Next, carry out pixel-for pixel fit for the image

Fitting Range	0.048 ns -		11.97	6 ns	Fitting Range	0.048 ns -		11.97	6 ns
Parameter	Value		Fit	Global	Parameter	Value		Fit	Globa
Forster Distance	1.000	nm			Forster Distance	1.000	nm		
Unquenched Donor Lifetime	2.489 ± 0.045	ns	\checkmark		Unquenched Donor Lifetime		ns		
Unquenched Donor Amplitude	33.299 ± 0.957	kCnts	\checkmark		Unquenched Donor Amplitude	33.299 ± 0.957	kCnts	~	
Quenched Donor Lifetime	0.585 ± 0.258	ns	~		Quenched Donor Lifetime	0.585 ± 0.258	ns	~	· · · ·
Quenched Donor Amplitude	2.660 ± 0.838	kCnts	~		Quenched Donor Amplitude	2.660 ± 0.838	kCnts	\checkmark	
Tail Offset	691.472 ± 40.234	Cnts	~		Tail Offset	691.472 ± 40.234	Cnts	\checkmark	
IRF Background	0.000	Cnts			IRF Background	0.000	Cnts		
IRF Shift	0.000	ns			IRF Shift	0.000	ns		
FLIM FRET Efficiency	76.479 ± 9.895	%			FLIM FRET Efficiency	76.479 ± 9.895	%		
Apparent FRET Efficiency	1.422 ± 0.841	%			Apparent FRET Efficiency	1.422 ± 0.841	%		
FRET Intensity	16.053 ± 13.236	kCnts			FRET Intensity	16.053 ± 13.236	kCnts		
Binding	7.396 ± 2.351	%			Binding	7.396 ± 2.351	%		
Donor-Acceptor Distance	0.822 ± 0.073	nm			Donor-Acceptor Distance	0.822 ± 0.073	nm		
χ²	0.969				χ ^z	0.969			

- Mono-Exponential Donor: This calculation model is applied if the fluorescence lifetime of the donor has a mono-exponential curve in the absence of the acceptor

- Multi-Exponential Donor: This calculation model is applied if the fluorescence lifetime of the donor has multi-exponential curve in the absence of the acceptor

In the presence of the acceptor, the lifetime of the donor decreases. The FRET efficiency $(FRET_{eff})$ as a measurement for the molecular bonding is calculated according to the formula below.

8-3 Fit Settings: Pattern Fit

Parameter	Value	Fit	Global
Tail Offset	14495.284 ± 977.966 Cnts	\checkmark	
Amplitude 1	1255.932 ± 248.552	✓	
Amplitude 2	1.381 ± 0.126	\checkmark	
Background 1	10.000 Cnts		
Background 2	1900.889 Cnts		
Shift 1	0.081 ± 0.030 ns	\checkmark	
Shift 2	-0.013 ± 0.010 ns	~	
Intensity Sum	251609.14+± 4476.57 kCnts		
Intensity Integral 1	63.908 ± 0.000 kCnts		
Intensity Integral 2	125436.93'± 0.000 kCnts		
Effective Integral 1	78794.263 ± 15594.7 kCnts		
Effective Integral 2	172814.88°± 15796.8 kCnts		
Fractional Intensity 1	0.313 ± 0.062		
Fractional Intensity 2	0.687 ± 0.062		
X²	5136.215		
Fit	All FLIM Im		

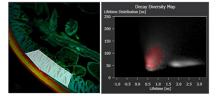
FLIM	FRET Pattern Fit
Fit	18-5 Clicking this button calculates the
	curve fitting with the setting listed above
	for all curves a selected in navigation table
Fit All	18-5 Clicking this button calculates the
	curve fitting with the settings listed for all
	curves of the selected detected channel
FLIM	Open the FLIM image Fit dialog, in which
Image	you can configure setting for the pixel-to-
Fit	pixel curve fitting of the curves selected in
	the navigation table and start the pixel-to-
	pixel curve fitting.

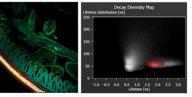
Tail Offset	Background intensity				
Amplitude	Intensity of fluorescence				
Background	Background				
Shift	Reset the pattern in the fit through a slight time offset				
Intensity Sum	Total intensity amount				
Intensity Integral	The integrated intensity is the number of photons in the pattern you				
	have selected in the decay histogram. The number of parameter				
	depends only the size and brightness of the selected ROI.				
Effective Integral	The effective intensity is the intensity if the component in your				
	sample. It integrates all photons of all pixels for this component.				
	If you want to know how much of this component is included in your				
	samples, the effective intensity specifies the number of photons.				
Fractional Intensity	This parameter specifies the proportion/fraction of the photons of				
	this component. All proportion should add up to 1.				
χ ²	Fit error or the fit precision for pixel				

Partin Text Text

Separating Components with FLIM Pattern Matching

(a, (b, (c): Define reference samples

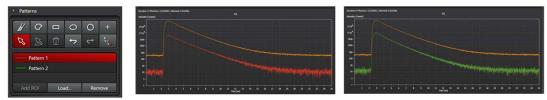

You can define reference patterns for the components in 2 ways: By plotting POIs in the decay diversity map or in the Fast FLIM image.


1. Switch to the Pattern Fit tab

2. In the Patterns dialog field, select a drawing tool and draw a ROI in a range you can define clearly

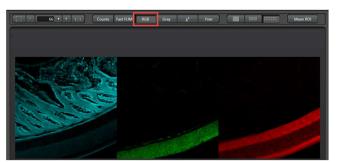
In Fast FLIM image: Color differentiation

In the decay diversity map: Definition of the lifetime distribution



3. In the Patterns dialog, for each plotted pattern, click the Add ROI button to add the reference pattern

The entry is created and color allocated to the pattern. At the same time, a lifetime decay curve for the pixels allocated to the selected ROI in the same color is displayed under Fit (The Orange curve shows the decay curve over the entire image).


4. Repeat step 2 and 3 for each additional ROI that you would like to delineate as a component.

(a): Carry out fit for decay curve

1. Set the remaining parameter to Fit for adjustment or fix to their own values (Fit) or link them globally (Global).

2. Carry out the curve fitting by clicking on Fit in the area of the parameter setting for the selected channels or Fit All for all channels.

After the pixel-for pixel fit for the image, the resulting images displayed in RGB mode.

. @. @. O

8-3 Fit Settings: Mean ROI

Only available for time lapse image

- 1. Turn on the Mean ROI
- 2. Select FLIM, FRET or Pattern Fit
- 3. select a drawing tool and draw ROIs

The lifetime changes within the ROIs are recorded.

Below the viewer, the Mean ROI dialog box display the ③average photon arrival time and ④the intensities for each ROI. For each ROI there is a curve in the color of the ROI

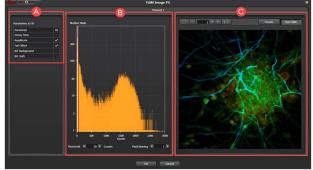
8-3 Fit Setting

Fit	If the option is enabled, the value will be determined from the	Link Link
	theoretical curve during curve fitting.	Link
Global	If you have selected multiple data records, this gives you ability	Link
	to select the same parameter value for all data records.	All

Link Channels

ission Wavelength asurements None

Close


Right click, display the dialog

Copy to Clipboard	Store the Fit parameters	Copy To Clipboard
Export	Save the Fit parameters as an Excel	Export Export and show
Export and show	Save the Fit parameters and open it as Excel	Limits Probability Level
	table	Error Correlation Plot
Limits	Open the limit dialog, in which you can select	
	configure upper and lower limit for the	
	respective parameter.	
Probability Level	You can enter a self-defined vale the	
	accuracy for all parameters. The	
	specification in the Fit Setting is adapted	
	based on the value.	
	(σ1:68.27%, σ2:95.45%, σ3:99.73%)	
Error Correlation plo	ot Display the data of a bootstrap analysis for	
Bootine (196)		
Ordinate	Select the parameters for display on the Y-axis	
Abscissa	Select the parameters for display on the X-axis	
Probability Level	You can enter a self-defined percentage for the confi	dence interval,
you can also define a multiple of the standard deviation σ .		

26

FLIM Image Fit...

Configure the setting for image adaptation for the selected detection channel in this dialog

O Parameter to fit: Calculates the pixel-to-pixel image adaptation automatically.

FLIM:		
Decay Time	Lifetime	
Amplitude	Intensity	
Tail offset	Background intensity	
IRF Background	Background intensity when acquiring IRF (meaningful if a	
	measured IRF is used)	
IRF Shift	Chronological offset of the IRF (meaningful if a measured IRF is	
	used)	

FRET:

Unquenched Donor Lifetime	Lifetime of the donor fluorescence without FRET		
Unquenched Donor Amplitude	Intensity of the donor fluorescence without FRET		
Quenched Donor Lifetime	Lifetime of the donor fluorescence with FRET		
Quenched Donor Amplitude	Intensity of the donor fluorescence with FRET		
Tail Offset	Background intensity		
Pattern Fit:			
Tail Offset	Background intensity		
Amplitude	Intensity of fluorescence		

[®] Histogram: Distribution of pixels over the number of counts

Threshold	You can define the threshold value the left window area by the red line.			
	At the same time. in the right area of the display window you can se			
	which areas have been selected in the image. If you have selected			
	Intensity for the view, all hidden areas not included in the evaluation are			
	displayed transparently in the Fast FLIM and in red in the Counts.			
Pixel Binning	Configure the number of pixels complied for calculating the curve fit If			
	the intensity is too weak.			

© In addition to the histogram, a preview image is displayed

 Counts
 Fast FLIM

 1
 2
 3
 4
 5
 6
 7

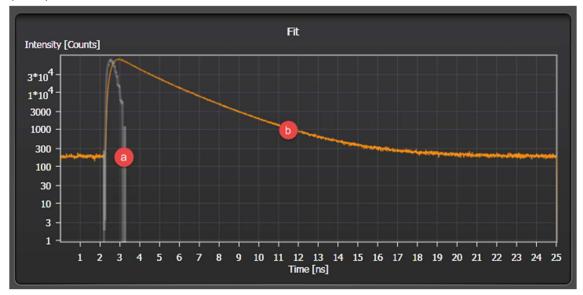
①Reset the zoom for the display window

2 Reduces the zoom for the display window

3 Allows you to enter the zoom factor the display window manually and adjust it using slider

4 Increase the zoom for the display window

(5)Sets the zoom for the display window


6 Show the number of counted photons in gray-scale value

⑦Shows the distribution of lifetimes in the selected false color coding

OK 🔘

8-④ Fit

The decay curve of the fluorescence intensities (Intensity) over time after the excitation pulse (Time)

(a): IRF(Instrument Response Function) of the excitation laser pulse

(b): Sum of the fluorescence intensities over time after excitation pulse

You can select an area by moving the left and right border edge of the diagram using the mouse

		Rescale	Zoom in and out on the curve using the
	Rescale		mouse wheel
	Show Legend Show Data Cursor	Show Legend	Show the legend in the diagram
~	Intensity logarithmic Show number Photons	Show Data Cursor	Show the value for time and intensity for
	Export diagram data		each point
	Export diagram data and show	Intensity logarithmic	Show the intensity value in a logarithmic or
	Copy diagram data to clipboard		linear view
	Export Image	Show number	Show the total number of the counted
		Photons	photons in the selected area
		Export diagram	Export the diagram data to the excel table
		data	
		Export diagram data	Export the diagram data to the excel table
		and show	and open the excel table
		Copy diagram data	Store the diagram data in the clipboard
		clipboard	
		Export Image	Store the diagram as TIFF, JPEG, PNG,
			BMP, GIF

Histogram

Pixel Intensity Histogram Number Pixels [Events]	Pixel Intensity	Display the Events over the photon per
1*10 ⁵ 1*10 ⁴ 1000 100 10 0.2 0.4 0.6 0.8 1.0 Photons per Laser Pulse	Histogram	Laser pulse for each pixel
Fast FLIM Histogram Occurrence [Events] 180000	Fast FLIM	Display the Events over the photon
140000 120000 800000 400000 0 -1 0 1 2 3 4 5 6 7 8 9 10 Time [ns]	Histogram	arrival time for each pixel
Efficiency Histogram Occurrence [Events] 14000 -	Efficiency	Display the Events over the average
14000 - 12000 - 10000 -	Histogram	Apparent FRET efficiency of all
8000 - 6000 - 4000 - 2000 - 0 10 20 30 40 50 60 70 80 90 100 FRET Efficiency [%]		molecules for each pixel
Donor-Acceptor Distance Histogram Occurrence [Events]	Donor-Acceptor	Display the Events over the distances
35000 30000 - 25000 -	Distance	between Donor and Acceptor for each
20000 - 15000 -	Histogram	pixel (The distances are specified in nm
10000 - 5000		and are reliable a long as the Forster
0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Distance [nm]		distance has been defined correctly)
Binding Histogram Occurrence [Events] 20000	Binding Histogram	Display the Event over the FRET binding
18000 - 16000 - 14000 - 12000 -		for each pixel (The bond strength
10000 - 8000 - 6000 -		between donor and acceptor: Proportion
		of the bound donor molecules to the total
0 10 20 30 40 50 60 70 80 90 100 FRET Binding [%]		number of donor molecules in %)
Decay Diversity Map Lifetime Distribution [ns] 9 -	Decay Diversity	Display the standard deviation of the
8 - 7 - 6 -	Мар	photon arrival times over the average
7 - 6 - 5 - 4 - 3 - 2 - 1 - 0 <u>2 4</u> 6 8 Lifetime [ms]		lifetime for each pixel

D' I I I' I		display the diagram.
Right Click or	i tha histoaram	digniav the diadram
	r uno motouram.	

	Rescale	
	Show Legend	
	Show Data Cursor	
\checkmark	Intensity logarithmic	
	Show number Photons	
	Export diagram data	
	Export diagram data and show	
	Copy diagram data to clipboard	
	Export Image	
R	escale	Reset the scaling to the default setting
S	how Legend	Show the legend in the diagram
S	how Data Cursor	Display the values for time and intensity for each point on the
		curve as a tool tip when hovering over them
Ir	itensity logarithmic	Shows the events in a logarithmic view. Otherwise, it is linear.
S	how number Photons	Open the Lifetime Histogram dialog, in which you can enter the
		number of data points to be displayed under Number Data point.
E	xport diagram data…	Export of the result data
E	xport diagram data	Export of the result data and show the data in an Excel table
a	nd show	
С	opy diagram data	Store the result data in the clipboard
c	ipboard	
Е	xport Image	Store the lifetime histogram as an image
		TIFF, JPEG, PNG, BMP, GIF

8-5 Result table

Before the measurement: There are one entry for each FLIM display channel

Number	Name	Channel	Region	Tail Offset Cnts	Amplitude 1	Amplitude 2	Background 1 Cnts	Background 2 Cnts	Shift 1 ns	Shift 2 ns	Intensity Sum kCnts	Intensity Integral 1 kCnts
	1 P-labelled_cells_for_FRET	. + Channel 2	Overall Decay									
	2 P-labelled_cells_for_FRET	Channel 1	Overall Decay									

After the measurement: One row is created for each image, each ROI and FLIM display

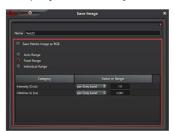
channel.

Number 🗠	Name	Channel	Region	Tail Offset Cnts	Amplitude kCnts	Decay Time ns	IRF Background Cnts	IRF Shift ns	Intensity kCnts	Sum Amplitudes kCrits	Sum Intensity kCnts Mean
	1 P-labelled_cells_for_FRET	Channel 1	Overall Decay	32,790	56,616	3,041	0,000	0,000	10760,212	56,616	10760,212
	2 P-labelled_cells_for_FRET	Channel 1	ROI 1	3,341	6,411	3,073	0,000	0,000	1231,565	6,411	1231,565
	3 P-labelled_cells_for_FRET	Channel 2	Overall Decay		3,354	2,782	0,000	0,000	583,290	3,354	583,290
	4 P-labelled cells for FRET	Channel 2	ROI 1	0.321	0.424	2.841	0.000	0.000	75.373	0.424	75,373

Right click on the table open the window

	Select Columns
	Copy table content
	Copy selected Rows
	Copy all
	Export table content
I	Export selected rows
	Export all
	Export table content and show
	Export selected rows and show
	Export all and show
	Parameter Plot

Select Columns	Open a new dialog in which you can select which columns
	(parameters) are shown in the result table
Copy table content	Copies the entire table contents to the clipboard
Copy selected Rows	Copies the content of selected rows to the clipboard
Copy all	Copies the values of all parameters to the clipboard,
	including columns not selected under select columns
Export table content	The table contents can be exported in Excel or CSV format
Export selected rows	Selected contents can be exported in Excel or CSV format
Export all	Entire table contents can be exported in Excel or CSV format
Export table content and	The table contents can be exported and show this in Excel
show	
Export selected rows	Selected contents can be exported and show this in Excel
and show	
Export all and show	Entire table contents can be exported and show this in Excel
Parameter Plot	You can carry out the data analysis for multiple data records
	and graphically display it for selected parameters
	(Ref. Next page)


Save Results	The current status of all analysis is stored, in the project directory.		
	The data can be called up again in LAS X FLIM/FCS and further		
	analyzed.		
Save Image	The colored Fast FLIM or FLIM image is created and stored as a		
	normal intensity image in the .lif format as a 3 channel image (RGB)		
	in the project directory and can be further processed as such. An		
	evaluation in LAS X FLIM/FCS is no longer possible with this format.		
You can enter a designation under Name			

8-6 This dialog allows you to save your analysis results or FLIM images

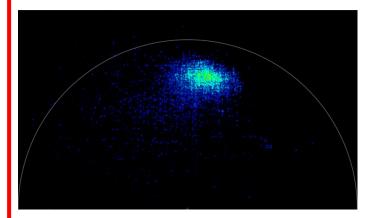
Save Pallet Image as RGB

If this function is enabled, the colored Fast-FLIM or FLIM image is created and stored as a normal intensity image in the .lif format as a 3-channel image (RGB) in the project directory and can be further processed as such.

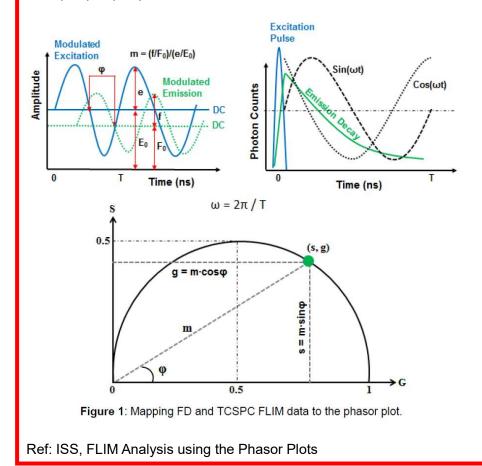
Auto Range Sc		Scales the image automatically between minimum and maximum so		
that the image is displayed properly, but no values are quantified.				
Fi	xed Range	You can select the scaling range for each display Category		
		separately.		
	Per Grey	Scaling by gray-scale value. Here, under Factor or Range, enter a		
	Level	factor with which the corresponding grayscale value is weighted.		
		The values are quantifiable.		
	Range Scaling by intensity. Here, select a range under Factor or Ran			
entering values for minimum and maximum. The values are		entering values for minimum and maximum. The values are		
		quantifiable.		
In	dividual Range	Here, you can define the scaling ranges for each component		
		individually, just like you can for Fixed Range. The values are		
		quantifiable.		

0	
0-	

File Settings Help


File

File		Settings	Help
	New	/ Experiment	Ctrl+N
	Ope	n Experiment	Ctrl+O
	Imp	ort	
	Expo	ort	
	Save	2	Ctrl+S
	Save	e as	
	Clos	e	
	Exit		Alt+F4


New Experiment	Create a new experiment in the project
	directory
Open	Open a previously saved experiment and
Experiment	load into the project directory
Import	Open an image file in the.ptu format for
	importing into the project directory
Export	Open an image file in the .ptu format for
	exporting
Export Raw	Open an image file in the .ptu format for
Data	exporting
Save	Save the current project or experiment in
	the .lif dormat
Save as	Save the current project or experiment in
	the .lif dormat
Close	Close the selected experiments in the
	project directory
Close All	Close all opened experiments in the
	project directory
Exit	Close the LAS X FLIM/FCS

Phasor Plot

A Phasor plot is a graphic visualization of the raw data of a FLIM acquisition in a vector space. Each pixel in a FLIM image is transformed into a point of the phaser diagram. The position depends on the pixel's average lifetime. This analysis is fast and returns a graphic display of the measuring curve

Zero lifetime is located at (1, 0) and infinite lifetime at (0, 0); the radius is 0.5. By changing lifetime from zero to infinity, the phase point moves along a semicircle (universal circle) from (1, 0) to (0, 0).

 $\hat{I}(t) = \hat{I}(0) \sum_{i}^{N} \alpha_{i} e^{-t/\tau_{i}}$

Eq. (1)

* $\hat{I}(t)$: The number of the instantly emitted photons at the time t. α_i, τ_i : The amplitude and fluorescence decay time of the *i*-th component o the mixture, respectively.

Due to the finite response of a system, the measured decay signal is a convolution form of the intrinsic decay and *IRF* plus the noise n(t), as shown in Eq. (2).

$$I(t) = IRF \otimes \hat{I}(t) + n(t) = IRF \otimes \left\{ \hat{I}(0) \sum_{i=1}^{N} \alpha_i e^{-t/\tau_i} \right\} + n(t) \quad \text{Eq. (2)}$$

Each decay trace can be plotted as a single point in the Phasor plot by applying sine and cosine transforms to the measured decay data, as shown by Eq. (3). This is equivalent to the real and imaginary components of the Fourier transform of the decay data.

$$g_{i,j}(\omega) = \frac{\int_0^{\infty} I_{i,j}(t) \cos(\omega t) dt}{\int_0^{\infty} I_{i,j}(t) dt} \qquad S_{i,j}(\omega) = \frac{\int_0^{\infty} I_{i,j}(t) \sin(\omega t) dt}{\int_0^{\infty} I_{i,j}(t) dt} \qquad Eq. (3)$$

 ω : The laser repetition angular frequency and calculated by multiplying the laser repetition rate with 2 Π . By taking Eq. (1) into Eq. (3) and solving the integrals, we can then derive the following relationships between the phasor and the lifetime, given by Eq. (4)

$$g = \sum_{i=1}^{N} \frac{f_i}{1 + \omega^2 \tau_i^2} \quad s = \sum_{i=1}^{N} \frac{f_i \omega \tau_i}{1 + \omega^2 \tau_i^2}$$
 Eq. (4)

* *N* is the number of the fluorescent species. f_i is the fractional contribution of the *i*-th species of the fluorescence lifetime τ_i to the total intensity.

For a single-lifetime species (N = 1), Eq. (4) is reduced to Eq. (5) and the lifetime can be directly determined by the coordinate value of a phasor.

$$g = \frac{1}{1 + \omega^2 \tau^2} \qquad s = \frac{\omega \tau}{1 + \omega^2 \tau^2} \qquad \tau = \frac{1}{\omega} \left(\frac{s}{g} \right)$$
Eq. (5)

For a multiple-lifetime species (N > 1), Eq. (4) can be re-written by Eq. (6).

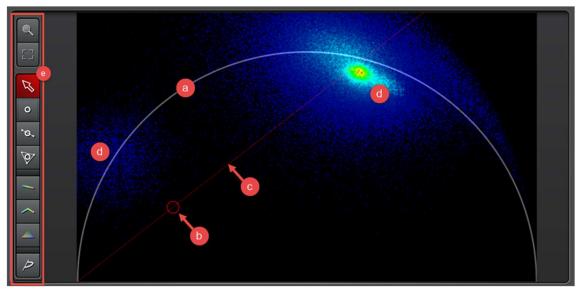
$$g = \sum_{i=1}^{N} (f_i g_i) \qquad s = \sum_{i=1}^{N} (f_i g_i) \qquad \text{Eq. (6)}$$
$$g = \frac{1}{1 + \omega^2 \tau_i^2} \qquad s = \frac{\omega \tau}{1 + \omega^2 \tau_i^2}$$

Ref: ISS, FLIM Analysis using the Phasor Plots

Selection field for the various FLIM methods. Here, you select the Phasor method.

B Phasor dialog for settings of the display in the display window.

© Display window for the FLIM image. Intensity mode is the default setting for the phasor plot method.


- Phasor display window.
- Toolbar for the phasor plot.
- © Data display of the components for the each selected tool for the phasor plot.
- © Display of the loaded image data records.
- Buttons for various save options e.g. you can save the Phasor Plot as an RGB image.

36-<mark>®</mark>

Harmonic	This parameter indicates the number of the harmonic wave of the Fourier		
	transformation that the respective lifetime is multiplied by. It corresponds		
	to the fundamental wave. For very short lifetime, the interesting regions in		
	the Phasor plot are located in the lower range at a small phase angle. By		
	increasing this value (to max. 9), you can shift the visualization of the		
	interesting regions further to the center to a greater phase angle.		
Threshold	Specifying a threshold value filters artifacts out of the Phasor plot. A value		
	of 5 is present as default.		
No Filter	No Filter is applied.		
Median	This is a median filter that smoothes the image while accentuating and		
	contouring structures in the image. This enhances the visibility of details.		
	When the checkbox is enabled, you can adjust the filter using the slider or		
	by entering a value. This filter is to be used for analysis purposes.		
	This filter is to be used, for analysis purpose.		
Wavelet	This advanced filter use a wavelet transform to reduce noise and preserves		
	intensity edges in the image. For this, it is necessary to know the noise		
	level, which is determined by the detection in counting mode. This filter is		
	used for e.g. optimizing STED acquisitions using a Phasor plot.		
Preview	The filter is suitable for the live mode to prepare the experiment. If this		
	check box is checked, you can use the slider or enter a value to set the		
	number of photon from the neighborhood over which the average is taken.		

36-0 Phasor Diagram

ⓐ Universal Circle

Gircle cursor with phase line (ⓒ). In the display window, those pixels that are located
 within the cursor are displayed in color in the intensity image.

O Phase line. It represents the angle of the phase shift.

O Cluster of lifetimes. They refer to the individual lifetime components.

Monoexponential components are located on the semicircle, multiexponential components below the semicircle.

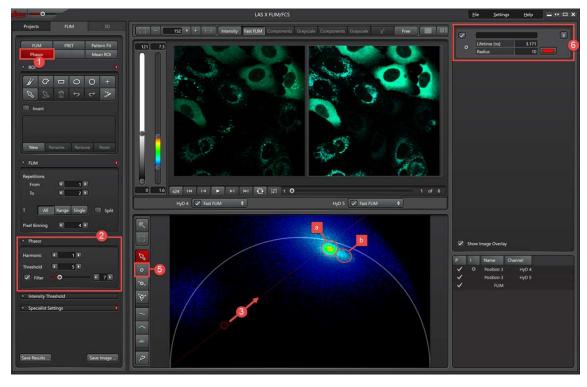
 Toolbar. Depending on which select, youcan adjust the appearance and perform analyses.

	Zoom
d d	Open a rectangle using the mouse in order to enlarge a section.
F 71	Reset
	Resets the zoom to the default setting.
R	Select
~	With this, you can select draw elements (cursor).
0	Draw Cursor
Ű	Draw a second cursor with associated phase line. In the start setting for the
	phasor method, a cursor is displayed. (Ref. p40)
20	Draw Ratio Cursor for two Components
°0.	With this, you can draw a connecting line between line between two
	components. (Ref. p42)
8	Draw Ratio Cursor for three Components

	With this, you can draw a connecting line between line between three	
	components. (Ref. p43)	
	Draw Connected Color Coding Line	
	With this, you can draw a line with a color scaling the phasor plot. (Ref. p41)	
	Draw Connected Color Coding Lines	
	With this, you can draw multiple connected line with a color scaling the phasor	
	plot. (Ref. p41)	
	Draw Connected Color Coding Triangle	
_	With this, you can draw triangle with a color scaling the phasor plot. (Ref. p41)	
b	Draw FRET Trajectory	
	With this, you can draw a path for the unquenched donor relative to FRET	
	efficiency. (Ref. p44)	
Draw Cursor		
0		

ⓐ You can show and hide the cursor and the phase line foet his component using the checkbox.

[®] The associated tool is displayed with its symbol.


© Using the color field, you can adjust the color of the cursor and phase line.

(D) By clicking **X**, you disable the selected tool.

Lifetime [ns]	The lifetime of component	
Radius	The size of cursor	

P	1	Name	Channel
~	0	Position 3	HyD 4
		Position 3	HyD 5
~		FLIM	

Р	If the check mark is set, this data is displayed in the phasor plot.	
1	Indicates whether the image is displayed	
Name	Designation of the data record in the project directory. For each image of	
	a data record, a separate row is created.	
Channel	Designation of the acquisition channel.	

Determining and Visualizing the Lifetime using the Phasor Method

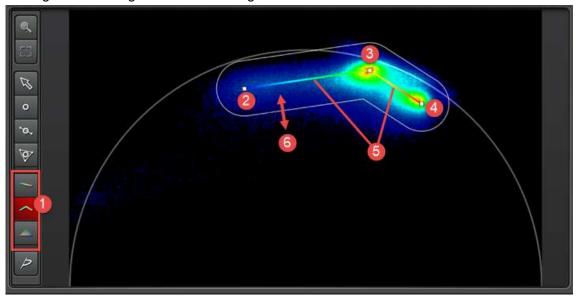
Select the Phasor method (1). The Phasor diagram (2) is displayed. Two pixel clusters can be discerned, which points to the presence of two components: a strong one (b) and a weak one (b). In the following, you define the strong components and determine the associated lifetime.

2. Adapt the setting in the Phasor dialog (②) in such a way that the visualization of the pixel clusters in the phasor diagram is clearly recognizable.

3. Move the cluster over the first pixel cluster (3) with the mouse button pressed down.

4. Adjust the cursor size to the pixel cluster using the mouse wheel.

5. At the top right edge of the screen (6), a field is displayed for the cursor where you can read off the lifetime for the defined component.

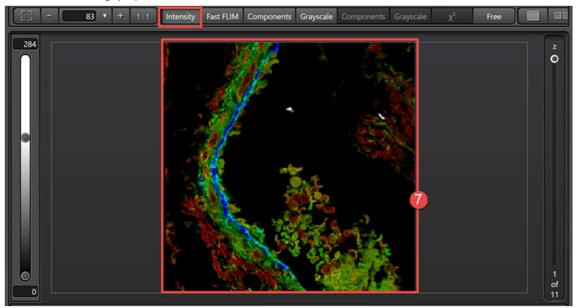

Lifetime	Lifetime of the component
Radius	Size of the Cursor

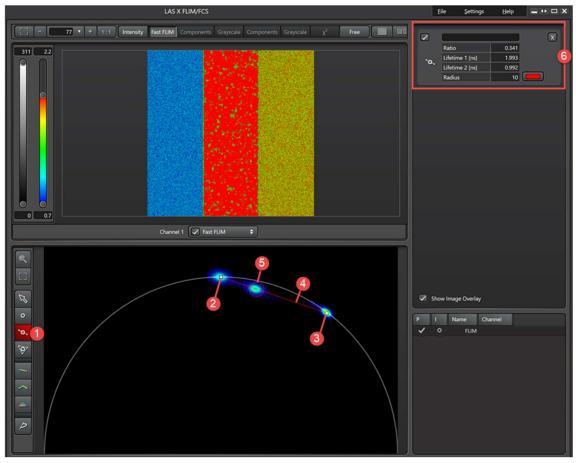
6. In order to define the second component, select the Draw Cursor tool from the toolbar

(5). A second cursor with phase line is displayed.

7. Repeat steps 3 to 4 dor the second component.

Adding Color Coding in the Phasor Diagram




1. Click on the desired tool from the toolbar to select it (1).

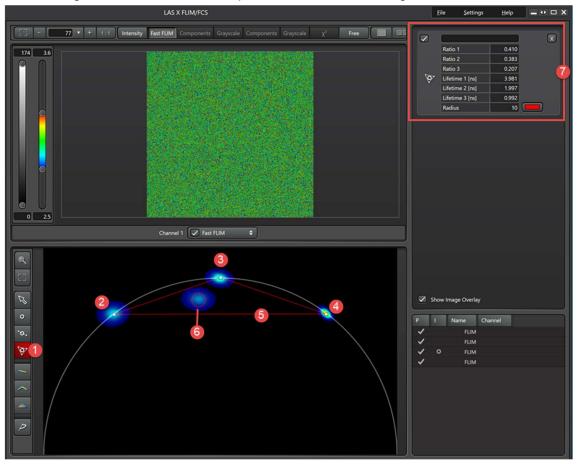
2. Draw a line, connecting line or triangle by clicking the starting point (2), holding down mouse button, drawing the line to the next point and releasing the mouse button there (3). For all further points, repeat the operation (3 and 4).

Depending the selected tools, the lines are plotted with a color gradient from red to blue (). In addition, a white frame marks the range (6) to which the color coding is to be applied. All pixels outside this range are displayed in white in the intensity image.

3. You can adjust the range by clicking the white line and dragging it to the desired distance ((6)). In this window, the intensity image is displayed within the defined range with color coding ((7)).

Determining the Ration of Two Components in the Phasor Diagram

Select the Draw Ration Cursor for two Components tool by clicking it on the toolbar (1).


2. In the Phasor plot, click the center of the area that represents 2 components (2, 3).

3. Finish the graphic by clicking. The connecting line is drawn using the cursor (4)

4. Hold the cursor, hold the mouse button pressed and move the cursor back and forth along the connecting line and adjust its size (5). This component contains two lifetimes and has its position below the universal circle.

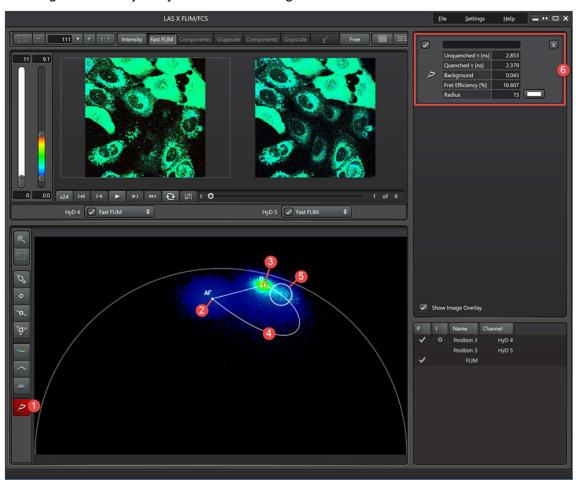
5. In the respective position, the associated data is displayed in the top right area (6).

Ratio	Ratio of the two components (2, 3)	
Lifetime 1, Lifetime 2	Lifetime of the components $(2, 3)$	
Radius	Size of the cursor (5)	

Determining the Ration of Three Components in the Phasor Diagram

Select the Draw Ratio Cursor for three Components tool by clicking it on the toolbar
 (1)

2. In the Phasor plot, click the center of the area that represents 2 components (2), 3,
(4).


3. Finish the graphic by clicking. The connecting line is drawn using the cursor (5).

4. Hold the cursor, hold the mouse button pressed and move the cursor back and forth along the connecting line and adjust its size (6). This component contains two lifetimes

and has its position below the universal circle.

5. In the respective position, the associated data is displayed in the top right area (7).

Ratio	Ratio of the three components ($(2, 3, 4)$). Total = 1
Lifetime 1, Lifetime 2, Lifetime 3	Lifetime of the components $(2, 3, 4)$
Radius	Size of the cursor (6)

Drawing a FRET Trajectory in the Phasor Diagram

1. Select the Draw FRET Trajectory tool by clicking it on the toolbar (1).

In the Phasor plot, click the center of the region that corresponds to autofluorescence
 (2)

3. Then, press and hold the mouse button to draw a line the component that corresponds to the unquenched donor (3)

4. Finalize the graphic by double-clicking. The FRET Trajectory is draw together with this (4).

5. A Cursor for the analysis of the quenched donor (FRET) is displayed. Click the cursor and move It back and forth along the trajectory with the mouse button pressed (5).

6.	In the respective po	osition, the associated	data is displayed in	the top right area (6) .
----	----------------------	-------------------------	----------------------	----------------------------

Unquenched τ	Lifetime of the unquenched donor
Quenched τ	Lifetime of the quenched donor (FRET)
Background	Ratio of the background noise
FRET Efficiency	FLIM-FRET efficiency.

Images from Phasor Method

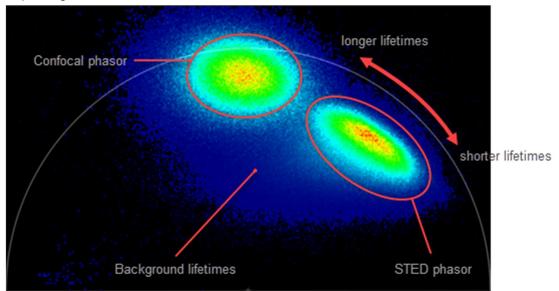
画像上で右クリックし、Export Raw Image を選択すると、下記画像が表示されます。

Save Phasor Mask	Save as an image of the Phasor mask that can be used	
	for further analysis and calculations. The Phasor	
	mask describe the region of the Phasor plot that	
	represented in the Fast FLIM image.	
Apply Phasor Mask to Image	Applies the Phasor mask to the images. This	
	particularly suitable for STED images where all longer	
	lifetimes with the excitation ring, are truncated.	
Save Phasor GS	Save the values for the g and s coordinates of the	
	Phasor plot (2 images). The X-axis of the Phasor plot	
	represents the real component (g) and the Y-axis	
	represents the imaginary components (s).	

H Save Image (Ref. page 33)

Save Result

The current status of all analysis result is stored, including all settings, in the project directory. The data can be called up again in LAS X and further analyzed.


Save Phasor

You can save the Phasor plot as an RGB image in the project directory. Select Split (Ref. page 10), then Z Stack or Time series data are saved as video in the format.

τ STED: What Is This ?

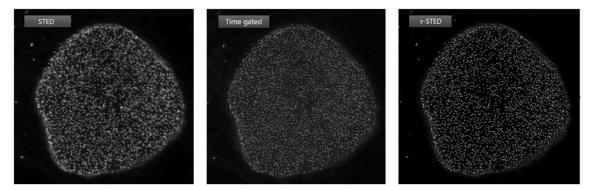
The τ STED method exploits the difference in the lifetimes by applying the component separation from the Phasor plot to STED images. In STED images, shorter lifetimes are mostly located in the range of the de-excitation donut, whereas the longer lifetimes primarily occur in the central excitation range. All longer lifetimes that are still present in the range of the de-excitation ring (donut) and the image background are filtered out, which increases the lifetime contrast between the central excitation range and de-excitation ring. This allows for improving the S/N and the resolution.

τSTED: The User Interface

fin -0	LAS X FLIM/FCS	Eile Iools	Help	= • 🗆 X
Projects FLIM 3D				1
FLIM FRET Pattern Fit Phasor r-STED Mean ROI • FLIM • • Specialist Settings •				
Save ResultsSave Image	Time gated r-STED Manual Background Supression 2100 P Strength Image: Control of the second se	4 5 6 7 Tme [ns]	89	

O : Selection field for the various STED-visualization method. Here, you select the τ STED method.

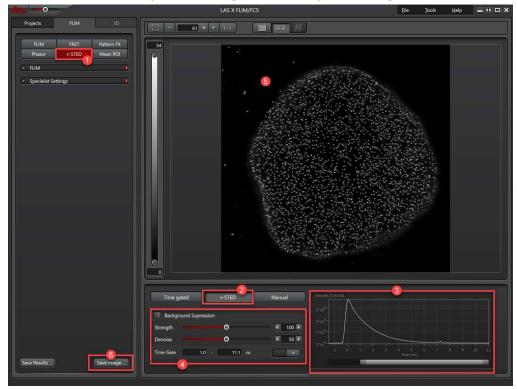
(B): Display window for the FLIM image. An intensity image is displayed for the τ STED method.


- \bigcirc : Setting range for the various STED method. The τ STED is default. Time Gate serves as a comparison with the conventional methods.
- O: The lifetime Decay Curve of the FLIM image is displayed here.
- (): Buttons for various save options, Save Image/Result

Display Methods: Time gated and **rSTED**

Time gated *t*-STED Manual

The various methods are described for the range FLIM to τ STED with their adjustment options and results. You can adjust phasor mask itself under Manual.

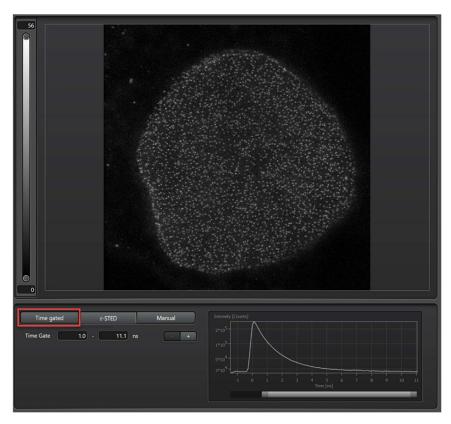

The following figure shows the result of the three methods side-by-side. The highest resolution can be achieved with the τ STED.

Multi-channel Acquisitions

 τ STED is also possible for multi-channel acquisitions. A button for channel selection is displayed for any channel. It is also possible for images without STED to be in one channel and images with STED to be in another channel.

 τ STED: Automatically Optimizing STED Analyses Using the FLIM Phasor Method

Select the τ STED(1), then the τ STED method(2) has already been preselected. The lifetime decay curve of the fast FLIM image is displayed in the area on the right(3). Adjust the settings (4).

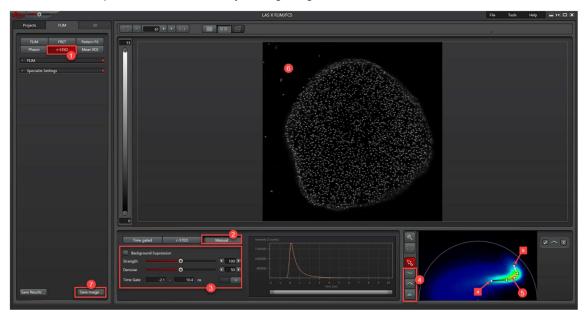

Fluorescence emission central area STED depletion donut

Background	Removes the background using its lifetime properties.	
Suppression		
Strength	Set the strength of the suppression of the pixels located in the range	
	the de-excitation ring(donut) and in the background. If the value is set	
	too high, then pixels from the central range will also be suppressed. A	
	value of 100 is preset.	
Denoise	Reduces the noise. A value of 50 is preset.	
Time Gate	Define the beginning and end of time gates for the detection here. You	
	can add/remove time gates by clicking the +/ For the set time gate, a	
	slider is displayed under the lifetime decay curve and can also be used	
	for setting the time gate.	

Save the Image by clicking the Save Image button.

Time gated

You can set a time gate for the detection here. You can improve the resolution by doing this, but with a lower signal strength.



Time Gate : You can define the beginning and end of the time gate here. You can add/remove time gate by clicking the +/-. sing. For the set time gate, a slider is displayed under curve and can also be used setting the time gate. Save the Image by clicking the Save Image button.

52

Manual

You have the option here of manually configuring the Phasor mask.

Select the ①τSTED and ②Manual method. The area on the right shows the Phasor Plot of FLIM image. The line corresponds to the basis for calculating τSTED. Configure the desired settings③.

Add black and white color coding to the FLIM image to show the intensities. To do so, select one of the tools from the toolbar. A black and white LUT is stored for the tools. Draw a connected line into the desired are of lifetime component.

As the beginning point (Black), select a point with short lifetimes in the border area of the Phasor (a). Since longer lifetimes also occur in the background, the Phasor shows curvature to the left. Therefore, set your beginning point in the background area. Then draw a line along the phasor and, as the end point (White), select a point with long lifetimes in the border area of the Phasor(b).

The display window will show the τ STED as an intensity image in grayscale, in other words, the longer lifetime, the brighter the corresponding pixels⁶.

Save the Image by clicking the Save Image button⁶.