From Eye to Insight

Lightning Manual

LAS X 3.5.5 Ver.1.0.0_JP

ライセンスにより取得した画像の再処理の方法と設定できるパラメーターが異なります			
	取得画像の自動処理	Lightning Expert	
		(パラメーターの変更)	
Lightning Process	×	0	
Lightning Expert	0	0	
Lightning	0	×	
*LAS X Small で画像処理はできません			

Lightning Wizard

ライセンスにより異なります。

Lightning と Lightning Expert のみ可、 Lightning Process は不可

①選択できる Scan Mode は xyz、xyzt、Mark & Find、Tile scan の 4 つです。

 ② Pinhole サイズを波長ごとに最適化する ために Frame Sequential が選択された状態の Sequential Scan が起動します。(Line
 Sequential や Stack Sequential も選択できます)

③撮影速度と分解能のどちらを優先させて撮影するか調整することができます。Lightning Gradeの設定は変更することができます(10 ページ参照)。(Pinhole size、Format size、Z step size、Scan Speed、Line Average/Frame Accumulation が自動的に設定されます。)

をクリックするとグレーアウトし、上記パラメーターを自由に設定することができるようになります。

④Strategy の選択と封入剤の選択または封入剤の屈折率を入力します。

▼ Lightning Settings	5 0 *		
Lightning			
Strategy :	Adaptive 🗘		
Refractive Index :	Adaptive		
Mounting Medium	BestQuality		
Mounting Medium :	LowSignalToNoise		
Get defaults Cancel Calculation			
Cancel Calculation			

Adaptive	画像の S/N 比から、各種パラメーターを自動設定します	
Global	すべての画像に使える設定です	
LowSignalToNoise	ノイズの多い画像に適しています デフォルトは Adaptive です	

Capture	画像取得のみで、自動処理を行いません
Start Experiment	画像取得と自動処理を行います

⑤Preview 取得方法

Live	設定した Frame size、Scan Speed で Scan します
Fast Live	512x512 pixel、600Hz 以上、Bidirectional で Scan します

⑥画像の取得

Start Experiment を押して画像の取得を行います。バックグラウンドで設定した条件で Lightning 処理が行われます。

Open projects			
E+ R. 12 E R. A	Ħ		
▲ Test.xlef (2.6 GB)	4 S		
Lightning 001 (2.6 GB)	-		
Series002 (320.8 MB, xyz)	Ø		
Series002_Lng (563.3 MB, xyz)	0		
Series002_Lng_001 (563.3 MB, xyz)	Ø		
Series002_Lng_002 (563.3 MB, xyz)	0		

左図のように Project の下に Lightning 001 というフォルダが作成されま す。画像はその中に保存されます。Series~が Raw データ、Series~ _Lng が Lightning 処理された画像です。同じデータを処理すると Series ~_Lng_001 というように数字が追加されていきます。 Process メニュー/Lightning メニュー

取得した画像は Process メニューまたは Lightning メニューから再度 Lightning 処理を行うことが できます。(ライセンスにより異なります)

Lightning Process	Process メニューから行います
Lightning Expert	Lightning メニューから行います
Lightning	Strategy の変更や封入剤の屈折率の変更のみできます。

* Lightning Process と Lightning Expert で変更できるパラメーターは同じです。

Open projects	ProcessTools	Batch Deconvolution
▲ Edit		0
✓ Lightning Lightnin	g process	

Process メニューの場合、左図 Lightning/Lightning process を選択 します。 Lightning メニューの場合、Lightning メニューを選択します。

どちらの場合でも、下記 Lightning Setting が表示されます。Acquire メニューと同様に Strategy と封入剤の選択または屈折率の入力を行います。

Confocal/STED/Multi-Photon、励起波長、取得波長幅、検出器(Standard/Counting)などの撮影条件に関する情報は自動で読み込まれ処理に反映されます。

	Lightning Settings	0
Strategy :		Adaptive 🗘
Refractive Index :		1.44290
Mounting Medium :		Glycerol + Water 80/20 💠
Expert Settings		0 ★
Open from	Get defaults	Save to file

Strategy

Adaptive	画像の S/N 比から、各種パラメーターを自動設定します
Global	S/N の良い画像に適しています
LowSignalToNoise	ノイズの多い画像に適しています

* デフォルトは Adaptive です。

赤枠内をクリックすると Expert Setting(オプション)が開き、設定することができます(Expert Setting については次ページ参照)。

Expert Setting を行わない場合は Apply を押して Lightning 処理を行います。

Open from	保存した Lightning 処理の設定を呼び出すことができます
Get defaults	設定をデフォルトに戻します
Save to file	Lightning 処理の設定を保存することができます

* Lightning 処理に関する設定は、Open Project/lif ファイルを右クリック/Properties から見ることができます。

Expert Settings

 Expert Settings 		×	
CH 1	CH 2	CH 3	
Туре:	(Confocal 🗘	
Number of iterations:		20 🗸 Auto	
Contrast Enhancement:		0.050 Auto	
Cut Off [%]:		1.2 Auto	
Regularization Method:	(None 🗘	
Regularization Parameter:		0.0500	
Optimization:	(Medium 🗘	
Post-Filter:		None 🗘	
Excitation Wavelength [nm]:		488	
Emission Wavelength [nm]:		519	
Pinhole [AU]:		1.00	
Normalization:		Range 🗘	
Objective			
Numerical Aperture:		1.40	
Magnification:		1.518	
z-Offset [µm]:		0.00	
Objective Design Parameters			
Cover Slip			
Refractive Index:		1.523	
Thickness [µm]:		170.00	
Mounting Medium:			
Mounting Medium:		Glycerol + Water 80/20 🗘	
Refractive Index:			
Open from file		Save to file	

Apply to all channels	多色の場合、設定を他の Channel にも反映させることができま	
	す	
Туре	Confocal、Multi-Photon、STED から自動選択されます	
Number of iterations	Lightning では反復計算が行われ、その回数の設定が行えま	
	す。数値が大きいほど、結果は良くなる傾向にあります。しか	
	し、Artifact が出る可能性も大きくなります。デフォルトである	
	Auto では、画像の S/N などを考慮し、Artifact を抑える回数が	
	自動で算出されます。	
Contrast Enhancement	Lightning の計算を始める前にバックグラウンドとシグナルのコ	
	ントラスト比の調整を行うことができます (0-1)	
Cut off (%)	Lightning の計算を始める前にバックグラウンドのレベルを設定	
	できます (0-1)	
Regularization Method	ノイズを抑えるのに効果があります。None、Total Variation と	
	Good's Roughness の3つの方法があります	

Regularization Parameter	Regularization の度合いを設定できます。値が小さいほどノイ	
	ズが小さくなります。 (0 - 1)	
Optimization	特にノイズの多い画像に効果があります。None、Low、	
	Medium、High、VeryHigh の 5 つの方法があります。ノイズが	
	多い場合はデフォルトである High がお勧めです。 シグナルの強	
	弱に応じて選択してください。	
Post-Filter	計算処理後に行う Smoothing の方法を選択できます。None	
	(処理なし)、Bilateral (Edge-preserving filter)と Gaussian	
	(Gaussian filter)の 3 つがあります。	

Excitation Wavelength (nm)	励起波長	
Emission Wavelength (nm)	検出波長 (最短波長+15%の値が表示されます)	
pinhole (AU)	pinhole サイズ	
Normalization	表示スケールの選択を行えます	
Range	16 Bit スケールに明るさが変換されます	
Photon Count	検出された Photon 数(定量性)を保ったまま、16Bit	
	に変換されます	
Objective	使用した対物レンズについての情報が自動入力され	
	ます	
Numerical Aperture	使用した対物レンズの NA が自動で入力されます	
Immersion Reflective Index	使用したレンズの封入剤の屈折率が自動で入力さ	
	れます	
Magnification	使用したレンズの倍率が自動で入力されます	
Z-Offset (μm)	Z ステップサイズが自動で入力されます	
Objective Design Parameters	使用した対物レンズの推奨値で、変更できません	
Immersion Reflective Index	推奨される封入剤の屈折率	
Design		
Cover Slip Thickness Design	推奨されるカバーガラスの厚さ	
Cover Slip Reflective Index	推奨されるカバーガラスの屈折率	
Design		
Cover Slip	カバーガラスの屈折率と厚さについて入力できます	
Refractive Index	使用した封入剤の屈折率が表示されます	
Thickness (µm)	カバーガラスの厚さ	
Mounting Medium	使用した封入剤の選択と屈折率を入力できます	

	Mounting Medium	使用した封入剤の選択を行うと、下記 Reflective index に値が自動入力されます
	Refractive index	選択した封入剤の屈折率が表示されます
S	Saving and Loading Setting	
Open from file		保存した Expert Setting を呼び出すことができます。
		(Lightning 処理に関する設定は、Open Project/lifフ
		ァイルを右クリック/Properties から見ることができま
		す。)
S	Save to file	Expert Settingの保存を行えます。 Open from file か
		ら呼び出すことができます

* バッチ処理方法(複数の画像に同じ設定の Lightning 処理を行う)

Control キーを押したまま同じ処理を行いたい画像を選択し、Apply をします。

STED の場合

下図の Type から STED を選択することで、STED 用の設定を行うことができます。

Depletion Wavelength [nm]	使用した STED レーザーの波長
Depletion Power [%]	使用した STED レーザーの出力
Saturation Factor	誘導放出の効率 Auto のチェックボックスをはずした場合、
	値を入力することができます
Excitation Laser Mode	励起に使用したレーザーの種類を選択します: パルスレー
	ザー (Pulsed)、連続発振レーザー(CW)
Depletion Laser Mode	使用した STED レーザーの種類を選択します: パルスレー
	ザー (Pulsed)、連続発振レーザー(CW)
Axial Percentage [%]	3D STED の場合、Z に何%の STED 光を当てたか(0: xy の
	み; 1: z のみ)
Drift Correction	Z スタック取得時の xy 平面ドリフト補正
Gated	Time Gate を使用して撮影した際に用いる
Gate Start [ns]	Time Gate の取得開始時間
Gate End [ns]	Time Gate の取得終了時間

Multi-Photon の場合

下図の Type から Multi-Photon を選択することで、Multi-Photon 用の設定を行うことができます。

Expert Settings	
fype:	Multi-Photon 🕈
Number of iterations:	20 🗸 Auto
Contrast Enhancement:	0.050 Auto
— 0	
Cut Off [%]:	1.2 Auto
0	
Regularization Method:	None 🗘
Regularization Parameter:	0.0500
— 0	
Optimization:	Medium 🗘
Post-Filter:	None 🕏
excitation Wavelength [nm]:	488
mission Wavelength [nm]:	503
Pinhole [AU]:	1.00
Normalization:	Range 🕈
Multi-Photon Settings	A
Internal Detector:	
Photon Count:	(+

Internal Detector	撮影に使用した検出器の種類を選択します:
	ピンホールのある内部検出器 (descanned detection), ピンホールの
	ない外部検出器 (non-descanned detection)
Photon Count	2 光子か3光子の選択を行います

Lightning Grade の設定変更

Configuration/Lightning 左図をクリックすると下記画像が表示されます。

Lightning	J	
Lightning Settings		
Pinhole AU :	0.50 🗢 🔘	1.50 🗢
XY Oversampling :	1.00 🗢 🔍	2.00 🗢
Z Oversampling :	0.50 \$	1.50 🗢
Line Average/ Accumulation :		4 \$
Speed :	400 🗢 🔘	1000 \$
Reset Values to Default	Load	Save

Lightning Grade で自動設定される、パラメーターの設定を変更することができます。

Pinhole AU	ピンホールサイズ(XY、Z Oversampling に影響します)
XY	XY 平面での分解能(Pixel size)
Oversampling	
Z	Zでの分解能
Oversampling	
Line Average /	PMT や HyD(Standard Mode)のときは Averaging の回数
Accumulation	HyD(Counting Mode)のときには Accumulation の回数
Speed	画像取得時のスキャンスピード