

In vivo calcium dynamics in plant cells: a holistic view

Professor Alex Costa

Department of Biosciences, University of Milan, Italy

日時: 2月4日(月曜日)16:00~17:00 場所: 農学・生命科学研究棟 (京都大学北部構内)

セミナー室(2) (1階 104号室)

In plants, increases in cytosolic Ca^{2+} concentration ($[Ca^{2+}]_{cvt}$), occurring in response to both biotic and abiotic stimuli, work as a key component of different signal transduction pathways. Depending on the stimulus, Ca²⁺ rises can display the form of a single transient, repetitive Ca²⁺ oscillations or sustained increase and are commonly designated as "Ca²⁺ signatures". Generation and shaping of Ca²⁺ signatures depends on fine-tuning of Ca²⁺ influxes and effluxes occurring at both the plasma membrane (PM) and membranes of the different subcellular compartments. The opening of PM Ca²⁺-permeable influx channels (e.g. GLRs, CNGCs, OSCAs....) in response to different stimuli will release Ca²⁺ into the cytosol and cause the generation of a Ca²⁺ transient, while activity of active Ca²⁺ efflux transporters (e.g. H^+/Ca^{2+} antiporters, Ca^{2+} ATPases...) will return the $[Ca^{2+}]_{cvt}$ to resting concentrations. Not only cytosol but also organelles and other subcellular compartments (e.g. chloroplasts, mitochondria, endoplasmic reticulum...) experience Ca²⁺ transients, hence putatively participating in the cellular Ca²⁺ homeostasis and potentially in the Ca²⁺ signature shaping process. To study these processes in planta the use of non-invasive state of the art imaging tools is required. In such a context the seminar will provide an overview of: use of the genetically encoded ratiometric Förster Resonance Energy Transfer (FRET)-based Ca²⁺ sensor Cameleon in plant. Attention will be paid to present the developed Cameleon sensors for the analyses of Ca²⁺ dynamics in different subcellular compartments; use of the presented technologies for the study of Ca²⁺ transporters involved in the regulation of cytosolic and organellar Ca²⁺ dynamics;

use of Light Sheet Fluorescence Microscopy (LSFM) for FRET-based Ca²⁺ imaging analyses in Arabidopsis root cells.