1. Kamioka Y, Takakura K, Sumiyama K, Matsuda M.
      Intravital FRET imaging reveals osteopontin-mediated polymorphonuclear leukocyte activation by tumor cell emboli.
      Cancer Sci. 2016 Dec 13. doi: 10.1111/cas.13132.
    2. Kawabata N, Matsuda M.
      Cell Density-Dependent Increase in Tyrosine-Monophosphorylated ERK2 in MDCK Cells Expressing Active Ras or Raf.
      PLoS One. 2016 Dec 9;11(12):e0167940. doi: 10.1371/journal.pone.0167940.
    3. Sano T, Kobayashi T, Negoro H, Sengiku A, Hiratsuka T, Kamioka Y, Liou LS, Ogawa O, Matsuda M.
      Intravital imaging of mouse urothelium reveals activation of extracellular signal-regulated kinase by stretch-induced intravesical release of ATP.
      Physiol Rep. 2016 Nov;4(21). pii: e13033. PMID: 27905300
    4. Li C, Imanishi A, Komatsu N, Terai K, Amano M, Kaibuchi K, Matsuda M.
      A FRET biosensor for ROCK based on a consensus substrate sequence identified by KISS technology.
      Cell Struct Funct. 2016 Nov 23. PMID: 27885213.
    5. Candeias MM, Hagiwara M, Matsuda M.
      Cancer-specific mutations in p53 induce the translation of Δ160p53 promoting tumorigenesis.
      EMBO Rep. 2016 Nov;17(11):1542-1551.
    6. Okuchi Y, Imajo M, Mizuno R, Kamioka Y, Miyoshi H, Taketo MM, Nagayama S, Sakai Y, Matsuda M.
      Identification of Aging-Associated Gene Expression Signatures That Precede Intestinal Tumorigenesis.
      PLoS One. 2016 Sep 2;11(9):e0162300. doi: 10.1371/journal.pone.0162300.
    7. Yamauchi F, Kamioka Y, Yano T, Matsuda M.
      In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.
      Cancer Res. 2016 Sep 15;76(18):5266-76. doi: 10.1158/0008-5472.CAN-15-3534
    8. Maryu G, Matsuda M, Aoki K.
      Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression.
      Cell Struct Funct. 2016 Jul 22;41(2):81-92. doi: 10.1247/csf.1600
    9. Mizuno R, Kamioka Y, Sakai Y, Matsuda M.
      Visualization of Signaling Molecules During Neutrophil Recruitment in Transgenic Mice Expressing FRET Biosensors.
      Cancer Sci. Methods Mol Biol. 2016;1422:149-60. doi: 10.1007/978-1-4939-3603-8_14.
    10. Takaoka S, Kamioka Y, Takakura K, Baba A, Shime H, Seya T, Matsuda M.
      Live imaging of TAK1 activation in Lewis lung carcinoma 3LL cells implanted into syngeneic mice and treated with polyI:C.
      Cancer Sci. 2016 May;107(5):644-52. doi: 10.1111/cas.12923.


    1. Komatsu N, Fujita Y, Matsuda M, Aoki K.
      mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas- mutant cancer cells.
      Oncogene 2015 Nov 5;34(45):5607-16. doi: 10.1038/onc.2015.16.
    2. Komatsubara AT, Matsuda M, Aoki K.
      Quantitative analysis of recombination between YFP and CFP genes of FRET biosensors introduced by lentiviral or retroviral gene transfer.
      Sci Rep. 2015 Aug 20;5:13283. doi: 10.1038/srep13283.
    3. Goto A, Nakahara I, Yamaguchi T, Kamioka Y, Sumiyama K, Matsuda M, Nakanishi S, Funabiki K.
      Circuit-dependent striatal PKA and ERK signaling underlies rapid behavioral shift in mating reaction of male mice.
      Proc Natl. Acad. Sci. U.S.A. 2015 May 11. doi: 10.1073/pnas.1507121112.
    4. Hiratsuka T, Fujita Y, Naoki H, Aoki K, Kamioka Y, Matsuda M.
      Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse epidermis.
      eLife 2015 Feb 10;4:e05178. doi: 10.7554/eLife.05178.
    5. Imajo M, Ebisuya M, Nishida E.
      Dual role of YAP and TAZ in renewal of the intestinal epithelium.
      Nature Cell Biol. 2015 Jan;17(1):7-19. doi: 10.1038/ncb3084.


    1. Sadaie W, Harada Y, Matsuda M, Aoki K.
      Quantitative in vivo fluorescence cross-correlation analyses highlight the importance of competitive effects in the regulation of protein-protein interactions.
      Mol Cell Biol. 2014 Sep;34(17):3272-90.
    2. Fujita Y, Komatsu N, Matsuda M, Aoki K.
      FRET-based quantitative analysis of feedforward and feedback loops in EGFR signaling and the sensitivity to molecular targeting drugs.
      FEBS J. 2014 May 21. doi: 10.1111/febs.12852.
    3. Mizuno R, Kamioka Y, Kabashima K, Imajo M, Sumiyama K, Nakasho E, Ito T, Hamazaki Y, Okuchi Y, Sakai Y, Kiyokawa E, Matsuda M.
      In vivo imaging reveals PKA regulation of ERK activity during neutrophil recruitment to inflamed intestines.
      J Exp Med. 2014 May 19. doi: 10.1084/jem.20132112
    4. Kumagai Y, Naoki H, Nakasyo E, Kamioka Y, Kiyokawa E, Matsuda M.
      Heterogeneity in ERK activity as visualized by in vivo FRET imaging of mammary tumor cells developed in MMTV-Neu mice.
      Oncogene 2014 Mar 17. doi: 10.1038/onc.2014.28.
    5. Yukinaga H, Shionyu C, Hirata E, Ui-Tei K, Nagashima T, Kondo S, Okada-Hatakeyama M, Naoki H, Matsuda M.
      Slow fluctuation of Rac1 activity is associated with biological and transcriptional heterogeneity of glioma cells.
      J Cell Sci. 2014 PMID: 24522191
    6. Miura H, Matsuda M, Aoki K.
      Development of a FRET biosensor with high specificity for Akt.
      Cell Struct Funct. 2014 Jan 8;39(1):9-20


    1. Aoki K, Kumagai Y, Sakurai A, Komatsu N, Fujita Y, Shionyu C, Matsuda M.
      Stochastic ERK Activation Induced by Noise and Cell-to-Cell Propagation Regulates Cell Density-Dependent Proliferation.
      Mol Cell. 2013 Nov 21;52(4):529-40.
    2. Aoki K, Takahashi K, Kaizu K, Matsuda M.
      A Quantitative Model of ERK MAP Kinase Phosphorylation in Crowded Media.
      Sci Rep. 2013;3:1541.
    3. Goto A, Sumiyama K, Kamioka Y, Nakasyo E, Ito K, Iwasaki M, Enomoto H, Matsuda M.
      GDNF and Endothelin 3 Regulate Migration of Enteric Neural Crest-Derived Cells via Protein Kinase A and Rac1.
      J Neurosci.2013;33(11):4901-4912.
    4. Aoki K, Kamioka Y, Matsuda M.
      Fluorescence resonance energy transfer imaging of cell signaling from in vitro to in vivo: Basis of biosensor construction, live imaging, and image processing.
      Dev Growth Differ. 2013 Feb 7.
    5. Mori Y, Yagi S, Sakurai A, Matsuda M, Kiyokawa E.
      Insufficient ability of Rac1b to perturb cystogenesis.
      Small GTPases. 2013;4(1):9-15.